Snowfall Detectability of NASA’s CloudSat: The First Cross-Investigation of Its 2C-Snow-Profile Product and National Multi-Sensor Mosaic QPE (NMQ) Snowfall Data
نویسندگان
چکیده
This study investigates snowfall detectability and snowfall rate estimation with NASA’s CloudSat through the first evaluation of its newly released 2C-SNOW-PROFILE products using the National Mosaic and Multisensor QPE System (NMQ) snowfall products. The primary focus is on the detection and estimation of surface snowfall. The results show that the CloudSat product has good detectability of light snow (snow water equivalent less than 1 mm/h) but degrades in moderate and heavy snow (heavier than 1 mm/h). The analysis suggests that the new 2C-SNOW-PROFILE algorithm is insufficient in correcting signal losses due to attenuation. Its underestimation is well correlated to snowfall intensity. Issues of sensitivity and data sampling with ground radars, which may affect the interpretation of the results, are also discussed. This evaluation of the new 2C-SNOW-PROFILE algorithm provides guidance for applications of the product and identifies particular error sources that can be addressed in future versions of the CloudSat snowfall algorithm.
منابع مشابه
Intercomparison of Vertical Structure of Storms Revealed by Ground-Based (NMQ) and Spaceborne Radars (CloudSat-CPR and TRMM-PR)
Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR) and Ku-band Precipitation Radar (PR), which are onboard NASA's CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics f...
متن کاملCloudSat-Based Assessment of GPM Microwave Imager Snowfall Observation Capabilities
The sensitivity of Global Precipitation Measurement (GPM) Microwave Imager (GMI) high-frequency channels to snowfall at higher latitudes (around 60◦N/S) is investigated using coincident CloudSat observations. The 166 GHz channel is highlighted throughout the study due to its ice scattering sensitivity and polarization information. The analysis of three case studies evidences the important combi...
متن کاملToward a Framework for Systematic Error Modeling of Spaceborne Precipitation Radar with NOAA/NSSL Ground Radar–Based National Mosaic QPE
Characterization of the error associated with satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving spaceborne passive and active microwave measurements for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. The authors focus here on the error structure of NASA’s Tropical Rainf...
متن کاملEvaluation and Uncertainty Estimation of the Latest Radar and Satellite Snowfall Products Using SNOTEL Measurements over Mountainous Regions in Western United States
Snow contributes to regional and global water budgets, and is of critical importance to water resources management and our society. Along with advancement in remote sensing tools and techniques to retrieve snowfall, verification and refinement of these estimates need to be performed using ground-validation datasets. A comprehensive evaluation of the Multi-Radar/Multi-Sensor (MRMS) snowfall prod...
متن کاملExperimental Light Rainfall and Snowfall Products for Cloudsat
When it launches next spring CloudSat, a component of the A-Train formation of satellites, will carry the first millimeter wavelength cloud radar in space. In addition to its stated objective of making a global survey of cloud microphysical properties, the CloudSat 94 GHz Cloud Profiling Radar (CPR) is also well-suited to the problem of determining the distribution of light rain and snow that c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014